Friday, December 26, 2008

Diamonds


In mineralogy, diamond (from the ancient Greek ἀδάμας, adámas) is the allotrope of carbon where the carbon atoms are arranged in an isometric-hexoctahedral crystal lattice. It is the second most stable form of Carbon. Its hardness and high dispersion of light make it useful for industrial applications and jewelry. It is the hardest known naturally occurring mineral. It is possible to treat regular diamonds under a combination of high pressure and high temperature to produce diamonds that are harder than the diamonds used in hardness gauges.Presently, only aggregated diamond nanorods, a material created using ultrahard fullerite (C60) is confirmed to be harder, although other substances such as cubic boron nitride, rhenium diboride and ultrahard fullerite itself are comparable. Diamonds are specifically renowned as a material with superlative physical qualities; they make excellent abrasives because they can be scratched only by other diamonds, borazon, ultrahard fullerite, rhenium diboride, or aggregated diamond nanorods, which also means they hold a polish extremely well and retain their lustre. Approximately 130 million carats (26,000 kg (57,000 lb)) are mined annually, with a total value of nearly USD $9 billion, and about 100,000 kg (220,000 lb) are synthesized annually.
The name diamond is derived from the ancient Greek ἀδάμας (adámas), "unbreakable, untamed", from ἀ- (a-), "un-" + δαμάω (damáō), "to overpower, to tame" They have been treasured as gemstones since their use as religious icons in ancient India and usage in engraving tools also dates to early human history.Popularity of diamonds has risen since the 19th century because of increased supply, improved cutting and polishing techniques, growth in the world economy, and innovative and successful advertising campaigns. They are commonly judged by the “four Cs”: carat, clarity, color, and cut.

Material properties

Diamond and graphite are two allotropes of carbon: pure forms of the same element that differ in structure.

A diamond is a transparent crystal of tetrahedrally bonded carbon atoms and crystallizes into the face centered cubic diamond lattice structure. Diamonds have been adapted for many uses because of the material's exceptional physical characteristics. Most notable are its extreme hardness, its high dispersion index, and extremely high thermal conductivity (900 – 2320 W/m K). Above 1700 °C (1973 K / 3583 °F), diamond is converted to graphite. Naturally occurring diamonds have a density ranging from 3.15 to 3.53 g/cm³, with very pure diamond typically extremely close to 3.52 g/cm³.

Hardness

Diamond is the hardest natural material known, where hardness is defined as resistance to scratching.Diamond has a hardness of 10 (hardest) on Mohs scale of mineral hardness.Diamond's hardness has been known since antiquity, and is the source of its name. The hardess diamonds in the world are from the Copeton and Bingara fields located in the New England area in New South Wales, Australia. They were called can-ni-fare (cannot be cut) by the Cutters in Antwerpt, when they started to arrive in quantity, from Australia in the 1870's. These diamonds are generally small, perfect to semiperfect octahedra, and are used to polish other diamonds. Their hardness is considered to be a product of the crystal growth form, which is single stage growth crystal. Most other diamonds show more evidence of multiple growth stages, which produce inclusions, flaws, and defect planes in the crystal lattice, all of which affect their hardness.The hardness of diamonds contributes to its suitability as a gemstone. Because it can only be scratched by other diamonds, it maintains its polish extremely well. Unlike many other gems, it is well-suited to daily wear because of its resistance to scratching—perhaps contributing to its popularity as the preferred gem in engagement or wedding rings, which are often worn every day. Industrial use of diamonds has historically been associated with their hardness; this property makes diamond the ideal material for cutting and grinding tools. As the hardest known naturally-occurring material, diamond can be used to polish, cut, or wear away any material, including other diamonds. Common industrial adaptations of this ability include diamond-tipped drill bits and saws, and the use of diamond powder as an abrasive. Less expensive industrial-grade diamonds, known as bort, with more flaws and poorer colour than gems, are used for such purposes. Diamond is not suitable for machining ferrous alloys at high speeds as carbon is soluble in iron at the high temperatures created by high-speed machining, leading to greatly increased wear on diamond tools when compared to alternatives.

Toughness

Toughness relates to a material's ability to resist breakage from forceful impact. The toughness of natural diamond has been measured as 3.4 MN m-3/2,which is good compared to other gemstones, but poor compared to most engineering materials. As with any material, the macroscopic geometry of a diamond contributes to its resistance to breakage. Diamond has a cleavage plane and is therefore more fragile in some orientations than others. Diamond cutters use this attribute to cleave some stones, prior to faceting.

Distribution

The Diamond Trading Company, or DTC, is a subsidiary of De Beers and markets rough diamonds produced both by De Beers mines and other mines from which it purchases rough diamond production. Once purchased by sightholders, diamonds are cut and polished in preparation for sale as gemstones. The cutting and polishing of rough diamonds is a specialized skill that is concentrated in a limited number of locations worldwide. Traditional diamond cutting centers are Antwerp, Amsterdam, Johannesburg, New York, and Tel Aviv. Recently, diamond cutting centers have been established in China, India, and Thailand. Cutting centers with lower cost of labor, notably Surat in Gujarat, India, handle a larger number of smaller carat diamonds, while smaller quantities of larger or more valuable diamonds are more likely to be handled in Europe or North America. The recent expansion of this industry in India, employing low cost labor, has allowed smaller diamonds to be prepared as gems in greater quantities than was previously economically feasible. Diamonds which have been prepared as gemstones are sold on diamond exchanges called bourses. There are 26 registered diamond bourses.This is the final tightly controlled step in the diamond supply chain; wholesalers and even retailers are able to buy relatively small lots of diamonds at the bourses, after which they are prepared for final sale to the consumer. Diamonds can be sold already set in jewelry, or as is increasingly popular, sold unset ("loose"). According to the Rio Tinto Group, in 2002 the diamonds produced and released to the market were valued at US$9 billion as rough diamonds, US$14 billion after being cut and polished, US$28 billion in wholesale diamond jewelry, and retail sales of US$57 billion.